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Abstract: Contemporary wastewater reclamation units entail several diverse treatment and extraction
processes, with a multitude of monitored quality characteristics, controlled by a variety of key
operational parameters directly affecting the efficiency of treatment. The conventional optimization
of this highly complex system is time- and energy- consuming, frequently relying on intuitive decision
making by operators, and does not predict or forecast efficiency changes and system maintenance.
In this paper, we introduce intelligent solutions to enhance the operational control of the unit with
minimal human intervention and to develop an AI-powered DSS that is installed atop the sensors of a
water treatment module. The DSS uses an expert model, both to assess the quality of water and to offer
suggestions based on current values and future trends. More specifically, the quality of the produced
water was successfully visualized, assessed and rated, based on a set of input operational variables
(pH, TOC for this case), while future values of monitored sensors were forecasted. Additionally,
monitoring services of the DSS were able to identify unexpected events and to generate alerts in
the case of observed violation of operational limits, as well as to implement changes (automatic
responses) to operational parameters so as to reestablish normal operating conditions and to avoid
such events in the future. Up to now, the DSS suggestion and forecasting services have proven
to be adequately accurate. Though data are still being collected from early adopters, the solution
is expected to provide a complete water treatment solution that can be adopted by a vast range
of parties.

Keywords: wastewater reclamation; reuse; value-added compounds; decision support systems;
artificial intelligence

1. Introduction

Recently, major global drivers such as water shortage, climate change, lack of high-
quality freshwater sources and cost issues related to water abstraction [1], have led to the
gradual increase in water reuse [2]. In 2011, reclaimed water after treatment comprised
0.59% of total global water use [1], which is projected to reach 1.66% by 2030, surpassing
desalination [1], with California, Singapore and Japan leading the way for innovative
technological solutions in the area of water reuse [3]. Apart from the dire need to increase
water reuse for environmental reasons, there is a significant financial incentive to exploit
the certain valuable wastewater components, using state-of-the-art reclamation techniques,
while serving the sustainability goals set by the circular economy pillars.

The food processing sector is not only extremely water-consuming [4,5] but also
follows wasteful practices, discarding vast amounts of water and nutrients in the form
of wastewater, which is difficult and costly to manage. However, it is an excellent source
of valuable nutrients and organic value-added compounds (VACs) [6] with a variety of
possible uses and benefits.
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Conventional wastewater treatment techniques long-established in the food process-
ing sector mainly include filtration, coagulation [7] and (primary/secondary) biological
treatment [8]. They require high investments, skilled personnel and increased maintenance
costs, providing slow processes, an extremely low capacity to adapt to wastewater changes
and limited efficiency to degrade a high range of organic substances [9]. Such techniques of-
fer an outdated approach to wastewater management, overlooking the potential to recover
VACs and recycle/reuse treated water.

On the other hand, modern water reclamation units could integrate a multitude of
highly adaptive and modular treatment techniques, including hybrid complementary
wastewater treatment techniques such as membrane filtration, biological degradation and
advanced treatment (photocatalytical/photolytical degradation) enabling the reclamation
of VACs and the subsequent treatment and reuse of polluted wastewater. The units could
include numerous sensors and data-monitoring instrumentation, controlled by multiple op-
erational parameters affecting the quality characteristics of treated water, which could have
a wide range of applications (water for irrigation, coolant, production water), frequently
restricted by environmental and health regulations.

This introduces a high level of system complexity, especially in the cases where diverse
wastewater treatment processes are employed, complementing each other. Up to this
point, the optimization of the treatment processes has been mainly carried out through the
manual evaluation of key parameter changes and the monitoring of selected indicators in a
single-factor fashion. This approach is time- and energy-consuming, difficult to rapidly
adjust to parameter changes and frequently relies on intuitive decision-making by operators.
Additionally, it does not predict or forecast efficiency changes and system maintenance,
in order to plan for operation/downtime. This workflow is quite inefficient in highly
advanced treatment processes, which include several parallel or serial processes, with
multiple scenarios of possible treated water applications. Advanced data mining and
decision support tools are necessary to address optimization of procedures in complex
wastewater treatment plants (WWTPs).

To address the complexity of the system, several prediction modeling techniques
have been employed in the past [10–14]. Artificial Intelligence (AI) technologies, such as
machine learning, deep learning and data analytics, have opened the way for intelligent
decision making in wastewater management. Beyond the use of traditional methods,
AI systems can further enhance the precision of optimal solution prediction, endowing
existing applications with several degrees of intelligence. Numerous AI models have
been successfully implemented for the removal of various pollutants from water [15].
For example, artificial neural networks (ANNs), fuzzy logic (FL) and genetic algorithms
(GA) are typical AI approaches for solving multivariate nonlinear problems and thus
have been modeled using experimental data to simulate, predict, confirm and optimize
contaminant removal in wastewater treatment processes [16]. Although AI technologies
are powerful tools for wastewater treatment, there are several limitations that hinder their
greater application. For instance, such methods require sufficient data for experimental
training, testing and overfitting of the whole process, which can itself be quite challenging.
Moreover, sudden fluctuations in the input variables or changes in the operating parameters
may tamper with the results and thus impair the precision of the predictions.

The design, planning and evaluation of water treatment processes requires the imple-
mentation of a decision support tool (DST) to evaluate alternative treatment techniques
(conventional or advanced) and WWT trains, as well as water reuse applications [2]. Up to
now, factors affecting the design and planning of a WWT process have included costs,
energy consumption and effects of wastewater quality on human health (legislation and ef-
fluent guidelines). A holistic decision support system (DSS) allows integrating all the issues
and provides a framework to solve multi-scenario problems [17]. DSSs have estimated,
in the past, the cost of WWT by using life cycle cost analysis (LCCA) for the economic
evaluation of alternatives. This is a complex task, taking into account financial, environ-
mental and social criteria. Therefore, DSSs have employed multi-criteria decision-making
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approaches (most often the analytical hierarchical process (AHP) [18] to aggregate different
criteria, including strengths and limitations for each WWT process and technique [2,19,20].
In the past, more elaborate multi-criteria analyses (MCAs) have been used to make com-
parative assessments of diverse WWT approaches, taking into account several criteria in
real decision making, regarding the selection of the most sustainable wastewater treatment
(WWT) technology [21], or intelligent-knowledge-based systems and superstructure-based
optimizations. In this case, a mathematical model is employed and integrated in the DSS to
generate a solution for water treatment under various water reuse scenarios [22].

Nevertheless, the need to simultaneously optimize design and energy consumption,
enhance operation and improve effluent quality and environmental sustainability requires
the use of advanced intelligent DSS (IDSS), using data-driven approaches, such as envi-
ronmental data mining [11,17] in the area of environmental data science [23,24]. For this
purpose, the analysis of online sensor data of increased quality [25], the integration of mea-
sures to address micro-pollutants [26] and to valorize VACs present in the wastewater [27]
and the participation of end users in the operation and design of fit-for-purposes WWT
systems [24] are essential and integral parts of an IDSS and necessary to develop a water
reclamation process highly adaptive to rapid changes.

Although data prediction algorithms and DSS systems have been developed in the
past, their integration to produce a holistic AI-powered system requiring minimal human
intervention has not been thoroughly studied, especially in the sector of food process-
ing. Additionally, the introduction of criteria, regarding the optimum reclamation of
VACs, in combination with consequent wastewater treatment, has not been attempted.
The information derived from online process monitoring through sensors, treated-water
quality prediction modeling and operation simulation of the water reclamation process
can be integrated in an IDSS fed by internal and external criteria to produce possible water
reuse applications.

In this study, we propose a novel treatment approach that is based on combining a
water treatment unit with an AI-powered DSS. The solution aims to introduce intelligent
solutions to enhance the operational control of the unit, with minimal human intervention
and to develop an iDSS, utilizing knowledge acquisition to control the selection of optimal
treatment conditions and to forecast data, aiming to minimize downtime. The unit will
provide decision support to end users (farmers, food processing industry, VAC consumers,
etc.), thereby reducing or eliminating the cost associated with estimating a strategy for
treating water waste. In this manner, businesses that follow a traditional water treatment
disposing technique may adopt state-of-the-art recycling and reclamation techniques with-
out having to pay the additional cost of an expert. This has both a positive financial effect
as well as an environmental one.

The outcome is expected to aid the food processing sector in becoming less water-
intensive, to help it transition from a linear (take, make and waste) approach towards a
more circular business model and to ultimately improve its overall environmental footprint.
Moreover, the exploitation of VACs can provide an additional source of income, while the
increase in the production of VACs will improve their availability on the market, and their
health benefits will become more accessible to the wider public. The transition towards
a circular and sustainable business model enables the formation of useful synergies at a
regional and local level.

The overall structure of the paper is as follows: Section 1 consists of the introduction,
while Section 2 outlines the main theory behind the WTM operations, as well as the main
outputs of the DSS together with a description of the techniques employed to achieve
them. Section 3 lists the results and the evaluation of these results from an initial set of
early adopters consisting of one food processing company and three individual farmers.
Section 4 summarizes the main conclusions of the present work and lists the next steps for
the further development and evaluation of our solution. Finally, Abbreviations provide a
table of the acronyms that are used throughout the present work and their descriptions.
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2. Materials and Methods

In the water reclamation process (Figure 1), a multitude of highly adaptive and
modular treatment techniques are employed, which enable the reclamation of VACs and
the subsequent treatment and reuse of polluted wastewater. The recovery of VACs is
initially carried out using a combination of sorption/extraction techniques, followed by
purification. Subsequently, complementary wastewater treatment techniques are employed,
including advanced treatment (photocatalytical/photolytical degradation) followed by
biological degradation. Each process is a separate modular unit able to be applied separately
or complementary to each other depending on the wastewater qualitative and quantitative
characteristics, the targeted treated water uses (e.g., irrigation, reuse in the production
cycle, further treatment, etc.) and the available budget.

Figure 1. Diagram of the water reclamation process.

In the proposed methodology, there is the need to minimize human intervention and
provide mechanisms for quick and targeted decision making and response. To address
this challenge, innovative deep learning approaches, advanced data analysis methods and
predictive analytics will be applied to the usage, health and performance data derived
from the units to empower the current approach with intelligent analytical and decision
support tools for predictive maintenance (early detection of malfunctions and minimization
of the downtime), optimization of the WWT process (fine tuning of the various parameters
for improvement of the final output), sustainability (energy saving, reusability of the
various outputs) and commercial opportunities leading to financial benefits (identification
of various outputs of significant market value, unknown before, energy savings, etc.).

The workflow of the process is depicted in Figure 2. The DSS is fed by various types of
information: static knowledge originating from domain expertise, past experience, external
data such as weather data and running irrigation water prices, historical data and real-time
information. The latter originates from sensors measuring key parameters of wastewater,
such as turbidity, pH, total organic carbon (TOC), specific UV absorbance at 254 nm
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(SUVA254), total suspended solids (TSS) and temperature. The accuracy of the previously
mentioned sensors is ±1%, 0.1%, 2%, 3%, 5% and 0.05%, respectively. These are the major
parameters monitored during the system operation. At the same time, the operation of the
system is controlled by several factors, mainly including the amount of coagulant, contact
time in the treatment unit (flow rate), number of oxidizing agents in advanced oxidation
unit (AOP), flow rate of HCl or NaOH necessary to change pH, intensity of irradiation
source and dissolved oxygen in the mix.

Figure 2. Flow chart of the proposed methodology.

The treated water can be potentially used in many different ways (application scenarios
in Figure 2), including for irrigation for nearby fields, as a coolant, as reused process water,
as aquifer recharge, etc., depending on external parameters such as water demand, water
prices, water scarcity due to weather conditions, etc.

Using deep learning, the DSS is able to provide suggestions and real-time recommen-
dations both in the backward (goal-driven) and in the forward (data-driven) sense. More
specifically, in the forward sense, the DSS can monitor the measured sensor values and,
using forecasting algorithms, predict the future values of the variables being monitored.
This information can be used by the DSS models to assign a rate to each of the possible
uses of the wastewater (e.g., for irrigation, coolant, etc.) together with an estimation of
how these ratings will evolve in the immediate future. Backward reasoning, on the other
hand, allows for the specification of the desired usage (e.g., irrigation); the DSS will then
give a rating of how good the monitored wastewater is for the desired usage along with
suggestions of possible treatment actions to improve the quality of wastewater to meet the
goal demands.

Although the prototypical treatment unit and the DSS have been implemented, data
are still being collected by early adopters. The present work documents the methodology
followed in Section 2 and gives the first qualitative results that were gathered by the early
adopters in Section 3.

Details of the DSS are given in the following subsection.
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2.1. AI-Powered DSS for Water Treatment

For facilitating semi-automatic decision making, a DSS prototype has been imple-
mented. The original prototype was developed in the context of the DigiCirc accelerator
program [28]; the work being presented here expands upon the prototype to include a
number of extended models that involve external forecasts, such as weather forecasts and
financial data.

The overall architecture of the DSS can be seen in Figure 3. Summarily, the main tiers
and their corresponding functionalities are:

• Persistency Tier: the tier where all data are stored.
• Middle Tier: the intermediate tier, which is responsible for transforming/providing

data to the enterprise tier and storing data in the Persistency Tier. It is also responsible
for obtaining data from various third-party sensors.

• Enterprise Tier: the tier containing the provided DSS services of the solution.
• Presentation Tier: the tier responsible for presenting efficient views of the data obtained

by the enterprise tier.

Figure 3. DSS Overall architecture.

This is an architecture typical of many applications that leverage legacy and IoT data
to provide end users with prognostics and analytics. The powerhouse of the DSS lies in the
two modules of the enterprise layer, namely:

• The water quality prediction service. This is used to represent, assess and rate the
quality of the water based on a set of input operational variables.

• Forecasting service. This service is used to forecast future values collected via sensors.

Working in tandem, the above modules provide full DSS functionality to the end user;
based on the quality prediction service, the user can gauge the best course of action based
on the latest status, while forecasting the estimation of the evolution of said quality can
be also used for enhancing decision support. The end user may opt for the best action
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by taking into account all relevant parameters; for example, she/he may opt to ignore an
optimum course of action if the forecasting services suggest that the overall cost may be
minimal if the decision is deferred.

The methodology for implementing the above two services is listed in the
following sections.

2.2. Water Quality Prediction Service

Briefly, water quality can be represented by a series of factors directly measured or
estimated by the expert user; these include turbidity, TOC, pH and SUVA254. Assessing the
quality of water and deciding the best treatment method typically involves expert opinion.
The quality prediction service aims to eliminate the need for this human intervention
by modeling this decision process. The model works both in the forward and in the
backward sense.

In the forward sense, the aim is to generate a cost estimation for each possible action
and to provide this to the end user. To that end, we employ a logistic regression model [29],
which takes as input the aforementioned parameters as a single state and, combined with
the selling value of the water (which, for now, is provided by manual uploads by the user),
and with the current weather forecasts, as these are provided by open weather services
(OpenWeather), predicts the quality of the processed water. The quality is classified into
one of three categories: very good, very bad or acceptable, according to the well-known
formula of calculating the logit transformation of the probability of the presence of the
characteristic of interest, which is given by:

logit(p) = b0 + b1x1 + b2x2 + · · ·+ bkxk

with the weights are calculated by fitting the model to the training data.
In the backward sense, the aim is to estimate the operational variables based on a

target outcome that the end user inputs. The typical use case scenario for this functionality
is when the end user wishes to exploit VACs in a specific manner (due to, for example,
current market prices) and gauges the water treatment module to check in which range
the observed values must lie to make the target goal profitable. For the backward sense
reasoning, the DSS employs the Skope Rules algorithm. Skope Rules [30] combines the
interpretability of a decision tree [31] and the modelization power of a random forest [32];
it partitions the variable space in a way that incorporates both expert opinion and fitting
based on training data.

For the prototype of the water quality prediction module, as this is exposed to the end
user under a prototypical implementation of the DSS’ GUI, see Figure 4.

2.3. Sensor Forecasting Service

The purpose of the forecasting of sensors is two-fold:

• To ensure that risks can be averted in time. For example, if, during processing,
a variable reaches a critical level, it could negatively affect the entire pipeline.

• To provide the water quality prediction module for computing costs and optimum
actions for the future, thus facilitating decision making, taking into account both
current values and future trends. In this sense, the DSS can be used to find minima
of cost values that take into account the future evolution of the system; these minima
may be more efficient than local minima computed by taking into account only the
current values, as these are recorded by sensors.
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Figure 4. Water quality prediction module. Values are given by end user or collected by the IoT
device connected to the water treatment module.

To implement the module, we employ two models of the same family, which differ
slightly in their purpose: an autoregression model [33] and a vector autoregression (VAR)
model [34].

Both models function in a similar fashion, so the main idea behind their operation will
be illustrated here for both. The models treat the provided input as time series data. Given
the past values of a specific sensor(s) and a sufficiently large rolling window through time,
the models predict the values the sensor(s) will produce in the future. It is important to
note that all time steps between samples must be the same, meaning if a value was not
received by a sensor for a specific time step for some reason, it should be replaced by a
default value. Both models were trained with lags = 1.

Sensor forecasting was implemented for the multivariable case. The single-variable
case was used to make predictions of future values of sensors based on data recorded
exclusively on said sensor. For many variables, such an approach may be sufficient,
especially if the values recorded correspond to variables that have low correlations with
other aspects of the treatment module. The multivariable case was used to make forecasts
of variables that had strong correlations. This facilitates both the more accurate predictions
of variables that may have multiple dependencies and forecasting of variables that are
difficult to measure directly, by extracting their trend based on calculations performed in
trends of other variables, which are easier to monitor.

For the prototypical implementation of the DSS and for the single-sensor case, the output
to the user comes in the form of a graph. The graph consists of two main parts, the red
part and the blue part. The red part illustrates the observed sensor values of the past,
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which also serves as training data for the estimator, while the blue part is the forecasted
values. The graph is very dynamic in nature, as it allows (among other things) the
following interactions:

• Inspection of the exact sensor value at any given time step.
• Thumbnail of the entire time series.
• Arbitrary zoom in/out of the time series by controlling the rolling window of the

thumbnail, which in turn affects the area displayed in the main graph.
• Fine-grained range control for the monitoring window. Default monitoring windows

of 5, 10, 20, 30 and 60 min and even the complete graph are provided as options.
• Ability to download the graph as a PDF, CSV and PNG.

For the multivariable case, though fitting and training of the models are more complex,
the output is very similar, with the main difference being that all correlated variables can
be monitored simultaneously.

Figure 5 depicts the monitoring of the sensor data for the multivariable case, with
an example case of monitoring TOC values in conjunction with pH values; the graph for
single-sensor forecasts is a special case of this graph with only one variable being depicted.

Figure 5. Multivariable forecasting, depicted for the TOC measured at the input of the module and
the pH of the water. Red (yellow) lines correspond to the values measured for TOC(pH), with blue
lines depicting the forecasts of the values.
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3. Results

Preliminary results of our methodology were collected by the usage of the water
treatment module (WTM) and the accompanying DSS from a set of early adopters. Early
adopters consisted of a food processing company and three individual farmers. The aspects
evaluated were:

1. The extent to which important events could be extrapolated by the WTM and the
underlying DSS alerting mechanisms.

2. Automatic responses of the WTM when measuring variables that are outside the
thresholds constituting normal operations.

3. Validity of the DSS suggestions after evaluation of the end users.

These aspects will be described in the following subsections, with the aggregated
results of the evaluation provided in a separate subsection.

3.1. Event Identification

By using the forecasting services of the DSS, important alerts can be generated when
real-time measurements indicate that measured variables fall outside margins that corre-
spond to normal operations. For the cases of single variables, this has been achieved by
monitoring services of the DSS, which can easily generate alerts in the case of observed
violation of operational limits. A more interesting case, however, is the event of dependent
variables, where the multivariate forecasting can gauge disruptions and lead the WTM to
adopt corrective actions as needed. An example of this is the total organic carbon (TOC) of
the water before AOP treatment (Figure 1), which we designate as TOC1. When this is high,
an oxidizing agent such as H2O2 in the AOP unit must be injected to lower the value. Using
single-variable forecasting only, the DSS may take some time to adjust the trend when a
disruption (e.g., input water with high TOC) occurs. If we perform multivariate forecasting,
however, using the TOC measurements from water entering the WTM (which we indicate
as TOC0), the disruption may be detected earlier, thus leading to more timely interventions.

These two cases are depicted in Figures 6 and 7. In this example, there was a sudden
increase in TOC0 after approx. 22 min of normal operation. After the 50 min mark, TOC0
was returned to normal levels. For the case of single-variable forecasting, the DSS projected
high future values, as recent TOC0 values were not taken into account. The multivariate
forecast, on the other hand (Figure 7), shows that TOC1 values are expected to fall. Although
the exact values may still be misaligned from the real ones for some time, the event that
denotes that TOC1 values have dropped can be easily deduced.

3.2. Automatic Responses

By constant monitoring of operational values, the WTM can react to changes without
the need for human intervention. One such example is the automatic injection of HCl or
NaOH to compensate for deviation in pH from the neutral value of 7. Figure 8 depicts a
typical use case of the automatic responses feature. Each data point represents the observed
values of pH, HCl or the NaOH flow rate in a minute interval. It can be seen that the
responses of the WTM have a minimal (lower than one minute) latency in injecting HCl or
NaOH to adjust the pH value.
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Figure 6. Forecasting the T0C1 values using single-variable method (data points are separated by
1 min intervals).
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Figure 7. Forecasting the T0C1 values using a single-variable method (data points are separated by
1 min intervals).
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3.3. DSS Suggestions

The DSS can offer suggestions via the generation of recommended actions by tak-
ing into account both current operational values, as these are recorded from sensors,
and external input such as accumulated rainfall and the selling price of treated water.
The rainfall currently originates from data offered by the OpenWeather service, while
selling prices are inserted manually. Table 1 depicts the set of rules, and the recommended
actions for each set of conditions. TOC3 denotes the total organic carbon content of the
treated water.

Table 1. DSS Rules.

Flow Rate (m3/h)
AND/OR TOC3

(mg/L C)

Selling Price
of Treated
Water/m3

Usage
Cost/m3

Drilling
Water

Accum.
Rainfall Last

48 h (mm)

Nitrogen
Content

mg/L

Field
Moisture

Content (%)
Recommendation

>1 AND <6.6 <0.7 >0.7 <1 0–1000 <15 Irrigation of
nearby fields

>0.2 AND (1–20) <0.7 >0.7 0–1000 >10 0–100 Irrigation of
greenhouses

<100AND (5–10) <0.5 0.5–0.7 >10–1000 <10 0–100 Reuse by company
(cooling)

(any) AND (10–30) <0.5 0.5–0.7 >10–1000 <10 0–100 Reuse by company
(washing)

(any) and (6.6–500) <0.5 0.5–0.7 >10–1000 1–10 0–100 Regional biological
treatment

DSS suggestions are evaluated in two aspects:

• Current aspect: in this aspect, the rules table is consulted and the recommenda-
tion is generated based on current values as these are inputs or measured directly
from sensors.

• Prognostic aspect: In the prognostic aspect, forecast techniques are used to predict
future evolution of time series data and the DSS offers the best recommendation,
taking into account all future values to offer the best recommendation for the desired
frame of reference. For evaluation purposes, a two-hour time frame was used; that is,
the DSS recommended the best action based on estimation about the water contents
and weather data over a two-hour period.

3.4. Overall Evaluation

The WTM and the accompanying DSS were evaluated using the aspects defined
above and by collecting input from one company and three farmer units over the course
of two weeks. These early adopters provided input for each one of the major aspects
presented above, with an evaluation being performed every two hours. Evaluation took
place by rating:

• Event Identification: Whether the DSS correctly predicted imminent events (such
as TOC1 disruptions, sudden pH increases, etc.). A value of “Yes” denotes correct
prediction of upcoming event, “No” denotes that an event observed was not predicted
by the DSS, and the label of “Irrelevant” corresponds to either false positives or
predictions that came too late to be of practical importance. Analysis also showed
that the multivariable approach led to an increase in accurate event identification by
an overall factor of about 21.2% when compared to single-variable forecasting. This
rough figure was not measured directly, since end users only used the prototypical
algorithm of the multivariable forecasts, but it was projected retroactively, based on
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sample reconstructions of a small subset of events and the relevant forecasts using
single-variable forecasts.

• Reaction Validation: whether the WTM reacted timely to observed or forecast pH values.
• DSS Suggestion: the extent to which the DSS produced recommendations deemed

correct by the users, based on the current observed values
• DSS Forecast: the extent to which the DSS produced future recommendations that

were deemed correct by the users.

The results of evaluation are depicted in Figure 9. Analysis of the results, together with
post-experiment discussions with the involved adopters, led to the following
preliminary conclusions:

• For the case of event identification, the DSS performed adequately, with most of the im-
portant events being correctly identified within the required timeframe. The “Irrelevant”
responses correspond mainly to false positives, while around 13% of the events were
not identified by the DSS. Post-experiment analysis of the data produced showed
that some other combinations of variables for the multivariate forecast could produce
better accuracy; this is an ongoing investigation whose results will undergo a second
phase of early adopter evaluation.

• For the reaction validation, the majority of the cases were correctly anticipated by
the DSS.

• For the DSS suggestion, the majority of recommendations were correct, with ~11%
being wrong recommendations. This was anticipated, as the rules of the DSS are
extracted from domain experience and the current state of the system is reliably
represented by the sensor values and external parameters.

• For the DSS forecast, which was expected to improve upon the current predictions
based on the DSS suggestion aspect, the overall accuracy of ~71% was significantly
lower. Although this is a negative result, we have observed that from the wrong
responses of the DSS suggestion module, a total of ~70% were correctly classified by
the DSS forecast module.

Figure 9. WTM and DSS preliminary evaluation results of early adopters.

4. Conclusions

In this paper, we presented an integrated solution of a water treatment module together
with a DSS that could facilitate the adoption of complex water treatment procedures by
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small companies or farming units, overcoming the difficulties associated with the need for
expert personnel. To this end, automation and expert opinion were embedded into the
sensors of the WTM and the DSS recommendation engine, which allowed the generation of
custom recommendations and the constant monitoring of the treated water.

The quality of the produced water was successfully monitored, assessed, rated and
forecasted, using selected input parameters in single- or multiple-variable modes. The DSS
was able to identify unexpected events whenever variables exceeded the range of opera-
tional limits. Finally, the DSS succeeded in implementing changes (automatic responses)
in operational parameters in order to reestablish normal operating conditions. Based on
different desired scenarios of water use and external parameters such as water prices,
weather conditions, etc., the DSS provided suggestions and forecasting services with
adequate accuracy.

Preliminary results from early adopters show that the output generated by the WTM
and DSS is correct in the majority of the cases. Future work consists in the enhancement of
the forecasting aspects of the DSS, especially the dynamic DSS engine and the multivariate
forecasts needed for event identification and future recommendation, and the validation of
this second version by a bigger set of early adopters.
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List of Acronyms

Acronym Description
AI artificial intelligence
ANN artificial neural network
AOU advanced oxidation unit
DSS decision support system
IDSS intelligent decision support system
pH potential of hydrogen
SUVA254 specific UV absorbance at 254 nm
TOC total organic carbon
TSS total suspended solids
VAC value-added compounds
WTM water treatment module
WWT wastewater treatment
WWTP wastewater treatment plant
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