
Chapter 8
A Decision-Support System
for the Digitization of Circular Supply
Chains

Dimitris Ntalaperas, Iosif Angelidis, Giorgos Vafeiadis, and Danai Vergeti

Abstract As it has been already explained, it is very important for circular
economies to minimize the wasted resources, as well as maximize the utilization
value of the existing ones. To that end, experts can evaluate the materials and give
an accurate estimation for both aspects. In that case, one might wonder, why is a
decision support system employing machine learning necessary? While a fully auto-
mated machine learning model rarely surpasses a human’s ability in such tasks, there
are several advantages in employing one. For starters, human experts will be more
expensive to employ, rather than use an algorithm. One could claim that research
towards developing an efficient and fully automated decision support system would
end up costing more than employing actual human experts. In this instance, it is
paramount to think long-term. Investing in this kind of research will create systems
which are reusable, extensible, and scalable. This aspect alone more than remedies
the initial costs. It is also important to observe that, if the number of wastes to be
processed is more than the human experts can process in a timely fashion, they will
not be able to provide their services, even if employment costs were not a concern. On
the contrary, a machine learning model is perfectly capable of scaling to humongous
amounts of data, conducting fast data processing and decision making. For power
plants with particularly fast processing needs, an automated decision support system
is an important asset. Moreover, a decision support system can predict the future
based on past observations. While not always entirely spot on, it can give a future
estimation about aspects such as energy required, amounts of wastes produced etc. in
the future. Therefore, processing plants can plan of time and adapt to specific needs.
A human expert can provide this as well to some degree, but on a much smaller scale.
Especially in time series forecasting, it is interesting to note that, even if a decision
support model does not predict exact values, it is highly likely to predict trends of the
value increasing or decreasing in certain ranges. In the next sections, we are going to
describe the four machine learning models that were developed and which compose
the Decision Support System of FENIX. Section 8.1 describes how we predict the
quality of the extracted materials based on features such as temperature, extruder
speed, etc. Section 8.2 describes the process of extracting heuristic rules based on

D. Ntalaperas (B) · I. Angelidis · G. Vafeiadis · D. Vergeti
SingularLogic, Achaias 3 & Trizinias st., 14564 Kifissia, Greece

© The Author(s) 2021
P. Rosa and S. Terzi (eds.), New Business Models for the Reuse of Secondary
Resources from WEEEs, PoliMI SpringerBriefs,
https://doi.org/10.1007/978-3-030-74886-9_8

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74886-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-74886-9_8


98 D. Ntalaperas

existing results. Section 8.3 describes howFENIXprovides time-series forecasting to
predict the future of a variable based on past observations. Finally, Sect. 8.4 describes
the process of classifying materials based on images.

8.1 Extracted Materials Quality Prediction

The first model of the proposed decision support system predicts the quality of the
produced material based on input features. More specifically, a Logistic Regression
model is used. This model is well-documented [1] and considered a standard in deep
learning. Logistic regression is used in various fields, including machine learning,
most medical fields, and social sciences, while it also provides invaluable predictions
in market applications. Before explaining the finer details of FENIX’s model, we
will explain the fundamentals of logistic regression in general. The goal of logistic
regression is to find the best fitting but biologically reasonable model to describe
the relationship between the binary characteristic of interest (dependent variable =
response or outcome variable) and a set of independent (predictor or explanatory)
variables. Logistic regression generates the coefficients, its standard errors as well as
the significance levels of a formula to predict a logit transformation of the probability
of presence of the characteristic of interest:

logit(p) = b0 + b1X1 + b2X2 + b3X3 + · · · + bk Xk

It originates from statistics and, while the most basic type of LR is the binary
LR, which classifies inputs into one of two categories as explained above, its gener-
alization classifies inputs into arbitrarily many categories. It is important to note,
however, that machine learning does computations in terms of numerical matrices
which are composed of features and weights. Since all features must be numbers, any
input feature which is not a number must be properly processed to remedy this. A
typical approach to this is one-hot categorical encoding. All non-numerical features
in FENIX such as the nameof thematerial have afinite set of possible values, enabling
the use of one-hot categorical encoding. What this encoding does is it maps each
string value into a vector of zeros, as many as the possible values for that feature,
while one of them is one for the position that represents the original string. For
example, let us assume that feature “f” has possible values “A”, “B”, “C”, then we
would map those to [1, 0, 0], [0, 1, 0] and [0, 0, 1], respectively. When encountering
an input of “B”, wewould immediately convert it to [0, 1, 0].While one-hot encoding
solves the issue, it creates another one. Since other features are already numerical, we
need to somehow “merge” the dimensions of the features for input X. For example,
let’s assume that X has the features “mean temperature” (value 34), “process energy”
(value 25) and “f” (value “B”). Then, 34, 25 and [0, 1, 0] need to be fed into the
model, but their dimensions do not match. This is solved by assuming each feature
being a 1 × N vector and then concatenating these vectors to form the final input X.
In this instance, X would be [34, 25, 0, 1, 0]. Another important aspect of the model



8 A Decision-Support System for the Digitization of Circular … 99

to discuss involves its activation function. The activation function defines the output
of that node given an input or set of inputs. For a binary LR, the activation function
would be a sigmoid, because it outputs a value in [0, 1], expressing a probability.

ϕ(ui ) = (1 + e−ui )−1

While this works well when a problem has only 2 possible classes, we need a
different way to achieve the same result for arbitrarily many classes. The solution
lies in using the softmax activation function.

fi (x
→) = exi

∑J
j=1 e

x j
, j = 1, . . . , J

The softmax activation function has a form that forces the resulting numbers to
be in [0, 1] as well, but with one additional property: their sum is always 1, so
all outputs express a probability distribution for the initial input. For example, if
we have three possible classes, C1, C2, C3 and an input X, the output would be
something like [0.3, 0.3, 0.4]. All values are in [0, 1] and their sum is 1. For FENIX’s
purposes, we try to predict the Satisfactory status of a material based on features
such as material input, process mean temperature, extruder speed (mm/min). Each
material is classified into one of three categories “Yes”, “No”, “Printable”. Features
which are not initially numerical are converted into one-hot categorical encodings
and then all features for each input are concatenated to form the input vector for
the model, following the procedure that was explained above. After the models’
computations, we obtain an output of the format [p1, p2, p3], where p1 indicates
the estimated probability for “Yes”, p2 for “No” and p3 for “Printable”. Obviously,
the highest among the values is declared the model’s prediction of class for the
specified input. Before the model can be used, however, it needs to be trained. To
that end, we conducted supervised learning. In general, machine learning uses two
general learning strategies during training, depending on the task at hand: supervised
or unsupervised learning. Unsupervised learning is a type of machine learning that
looks for previously undetected patterns in a data set with no pre-existing labels and
with aminimumof human supervision. In contrast to supervised learning that usually
makes use of human-labelled data, unsupervised learning allows for modelling of
probability densities over inputs. Supervised learning is the task of learning a function
that maps an input to an output based on example input–output pairs. For FENIX, we
already know that each material will have one of three “Satisfactory” status, we only
need to learn to predict it. To that end, we labelled a generous amount of input with
the correct satisfactory status. These samples were further split into test, training, and
validation datasets. The split is necessary, because we want the model to train under
part of the data and not overfit, which is why we need the test-train split. However,
we also want to make sure its performance is sufficient even on samples it sees for
the first time (which will be the case in deployment as well), as well as ensure the
model does not create correlations of any kind between test and training data. This



100 D. Ntalaperas

Fig. 8.1 Precision and recall

justifies the further split of the test data into test and validation. In order to increase
the credibility of the results, we used state-of-the-art metrics to evaluate our model,
namely precision, recall and F1-score. In pattern recognition, information retrieval
and classification (machine learning), precision (also called positive predictive value)
is the fraction of relevant instances among the retrieved instances, while recall (also
known as sensitivity) is the fraction of the total amount of relevant instances that
were retrieved. Both precision and recall are therefore based on an understanding
and measure of relevance (Fig. 8.1).

Intuitively, precision shows the ratio of the outputs we predicted correctly
compared to the sum of correct predictions and false positives (values that were
classified as being correct by mistake). Recall shows the ratio of the outputs we
predicted correctly compared to the total amount of correct predictions and false
negatives (values that should be classified as the specific class but did not bymistake).

Precision formula

precision = true posi tives

true posi tives + f alse posi tives
(8.1.1)

Recall formula

recall = true posi tives

true posi tives + f alse negatives
(8.1.2)

Finally, F1-score belongs to the family of F metrics, which indicate a weighted
mean calculation of precision and recall, with the goal of providing a final “overall
score” for a model.

Fβ = (1 + β) · precision · recall
β2 · precision + recall

(in precision − recall terms)



8 A Decision-Support System for the Digitization of Circular … 101

Fβ = (1 + β) · (1 + β)2 · T P

(1 + β)2 · T P + β2 · FN + FP
(in T P − FP − FN terms)

When β = 1 we get the F1-score, which is the harmonic mean of precision and
recall:

F1 = 2 · precision · recall
precision + recall

= 2 · T P

2 · T P + FN + FP

Finally, to make the evaluation even more thorough, we conducted k-fold cross
validation. This is a powerful technique when training a model under a dataset
because it tries to reduce overfitting as much as possible. Simply put, let us assume
that all the samples for training (test, train, validation) are split into k sets (where k
> 3). Then, if we shuffle the k sets and assign them to test, train and validation (with
correct proportions, train should be about 60% of the samples and test and valida-
tion 20% each), we force the model to better generalize its learning capabilities. To
make the model more useful, we provide it as a service to the FENIX platform via
a REST API. As a matter of fact, all four models documented in this chapter are
provided in that way. This isolates each model for potential future extensions, addi-
tion of features etc., while they seamlessly work together with the platform. While
it is important to document the model’s pipeline from training to deploying, it is
also necessary to justify its usefulness for a circular economy of reusing materials,
especially after going through all this trouble. As already explained, a human expert
can do the same as LR does, probably with more precise results. However, there are
a few things to consider. For starters, if more variables need to be taken into consid-
eration for decision-making, the model can be very easily adapted (to the point of
barely changing its code even). In contrast, a human expert will need to adapt his
strategy and heuristics, perhaps even do research on new variables, and learn their
role and how they affect the result, to achieve similar results. Considering many vari-
ables can also lead to mistakes as a single wrong calculation would lead an expert
to make the wrong call. The model will never make such mistakes. Furthermore,
when facing an industry with ever-increasing needs for fast and efficient processing,
it’s hard to argue against a fully automated decision support system that can almost
instantaneously notify about the quality of the produced material just by taking into
consideration the initial parameters it is going to be processed. This knowledge can
even be used in artificial experiments to save thousands or perhaps millions of dollars
by experimenting with optimal values, instead of trying them and potentially failing.

8.2 Rules Extraction

The next model we are going to present is responsible for extracting rules based on
input parameters and pre-classified results. Its function not only complements the LR
classifier, it also provides powerful insight on greatly reducing the cost of resources



102 D. Ntalaperas

when recycling materials. This will be further expanded upon near the end of the
section. The goal of this model is simple: given a set of sample inputs with specified
variables and the actual result that is a direct result of these variables, it creates a
hierarchy of rules, starting from the most prevailing one and/or selecting the top N
rules which guarantee withmaximal accuracy a desired result. A careful readermight
ask, whymaximal and not maximum? Remember that every machine learningmodel
makes mistakes (no matter how small), they merely try to maximize the accuracy
they have. This means that the extracted rules will ensure that the model is correct
for as many times as it is possible given the data it was trained with. In general, rules
extraction consists of a family of powerful inductive algorithms which are based on
the principle of separate and conquer. There is a wide area of applications these kinds
of models can be applied on: stock investment, finances, text processing and so on.
An investor can analyse the global market and use extracted rules to decide when it is
wise to invest on a specific stock based on past economic trends. Text processing for
a specific purpose can utilize specific rules to decide on thresholds certain heuristics
work. Such models are based on decision trees [2, 3] and random forests [4], which
generate a hierarchical structure of rules based on their maximal accuracy, then
combine them to maximize the overall accuracy. It is important to note that, while
other combinations of rules of similar total accuracy may exist, the ones extracted
are also the simplest. This is very interesting, because the heuristic criteria needed
to fulfil a specific outcome are as few and simple as possible. The model used for the
purposes of the project offers a trade-off between the interpretability of a Decision
Tree and the modelling power of a Random Forest. Its hybrid architecture consists
of both decision and regression trees. After filtering a set of logical rules according
to precision and recall thresholds, the higher performance rules are extracted and,
after deduplication (it is possible to reach the same rules from different routes), the
final set of the best heterogenous rules is generated. The implementation is based
on SkopeRules, which in turn is based on the works of RuleFit [5], Slipper [6],
LRI [7], MLRules [8]. In our case, the model utilizes the same training samples
as the LR model. The difference is that both the input features and the labels are
now given; we now want to extract the rules which maximize the accuracy for each
label type. So, since “Satisfactory” status can be “Yes”, “No” or “Printable”, we
need to extract 3 sets of rules, one for each label. This time, we split the dataset a
bit differently since rule extraction only works for a single label. 3 separate model
trainings take place, each model training under sample data for its respective label.
A major advantage of this approach is that, once the set of rules for each label is
generated, it does not have to be computed again. It can be stored and just returned
on demand. As with all models, this is also offered as a separate service via a REST
API, allowing future updates or retraining of the model while the FENIX platform
is live. As before, we need to discuss the value of the model compared to preferring
a more traditional approach, such as employing a human expert. While a human
is capable of providing a set of heuristic rules for maximizing the accuracy for a
specific label, it is unlikely they will be the simplest possible and it is difficult to
provide weights on the importance of the rules’ aspects they picked, they can only
weigh their importance based on their own experience in the field. On the contrary,



8 A Decision-Support System for the Digitization of Circular … 103

automated rule extraction can provide the simplest rules possible given a training
dataset, as well as detailed scoring information. We also need to consider the case
where more variables need to be considered for decision making. A human expert
will need to conduct research on variable thresholds, study their potential in effecting
the result etc., not to mention do all the computations again (and running the risk
of making a mistake). In the same situation, the model barely needs any change,
and, after training, it is ready once more to immediately provide the extracted rule
sets. Finally, automated rule extraction can easily enable artificial simulations where
power plants can test their results by tweaking the variables around their thresholds.
This can lead to cheap discovery of combinations of variables which provide better
productivity and with even less cost in resources.

8.3 Time Series Forecasting

Next, we are going to discuss our proposed time series forecasting model. A time
series is a series of data points indexed, listed, or graphed, in time order. Most
commonly, a time series is a sequence taken at successive equally spaced points
in time. Thus, it is a sequence of discrete-time data. Time Series analysis can be
useful to see how a given asset, security, or economic variable changes over time.
Obviously, any kind of variable evolving through time is an immediate subject of
application, such as stock market values, financial values of houses in the 1970s etc.
The power of time series analysis lies in taking into consideration more than just the
individual discrete data points. It takes into consideration the correlation between
two data points, but it also takes into consideration the overall behaviour of the series
throughout the entire past to generate the next point. For our purposes, we wish to
analyse the active, reactive, and apparent power series in order to predict the future.
Since we already have existing samples, we can just get rid of a few samples after a
certain time t. Then, we can try to predict them by training on the past points of the
series. A very important parameter that greatly affects the capabilities of a time series
prediction model is the window size. Simply put, it is the number of discrete data
points the series uses internally to infer correlations from. Selecting a large window
can lead to overfitting or completely missing the important correlations (due to the
model focusing on the general structure of the series instead of specific patterns and
correlations). On the other hand, a small window provides little to no correlation
information, making the model perform badly. Therefore, it is important to find a
window size value which serves as a good compromise between the two. The model
we created gets as initial data all existing data points for each reactor variable, then
generates incrementally and in real-time future data points indefinitely. It is important
to observe here that, since the time series contains numerical values already (we
are inspecting a numerical variable’s evolution through time), no transformations
for input data is required for this model, a far cry when compared to the previous
models. As time advances after the initial data points, the series graph is split into
two parts: the series evolving with real values and the series evolving with predicted



104 D. Ntalaperas

values. This dual graph is provided to assist in decision making, so that any major
differences between a predicted and actual value can be immediately spotted. To
make the information more accessible, the past of the series is coloured in blue, the
predicted series in red and the actual future series in dotted blue. The diagrams also
offer dynamic capabilities, such as freezing a part of the series for more thorough
inspection, zooming in to take a closer look at a set of data points, etc. A thumbnail
of the entire series is also provided to make browsing easier. Time series prediction
of this kind is particularly useful for FENIX decision support. Reactors’ status does
not need to be constantly monitored that way, releasing human resources for other,
more immediate tasks. If there is a big difference between a prediction and an actual
value, an automatic alert can be immediately forwarded so that necessary actions can
be taken on time. Furthermore, estimating the future values of the reactors’ variables
can make it easier to predict the lifespan of the reactors, their energy needs etc. This
can increase savings by a large margin. It also offers the opportunity to maintain
the reactors much better by managing their condition and greatly expanding their
lifespan. Another strength of this approach lies in its lightweight nature. The initial
input sets the limit to how much data will be in memory. After that point, only a
window size’s worth of data will be in memory since new values are incrementally
generated and returned to the FENIX platform via REST. Computations are fast and
the memory needs will not increase in the future, making this model even more
appealing to utilize. Like all models, this is also provided as an independent service
via a RESTAPI, allowing future updates or retraining of the model while the FENIX
platform is live.

8.4 Materials Classification

Lastly, we present the materials classifier, which is based on image data. In this case,
the input is an image of the material at hand, while the model classifies the image
(and, consequently, the material) into one of two categories (good, bad material).
Like all previous models, extending the possible output categories to a larger set is
trivial. Once more, we first need to delve into the actual model’s finer details before
showcasing its usage within FENIX. Since the input is images this time around, the
first hidden layer of the neural net will be convolutional. This means that, instead of
having a different weight for each pixel of the image, only a small set of weights (and
therefore a significantly a smaller number of neurons are needed) are being applied
to small subsets of the image. The reason this is more promising than a plain neural
network is that “local features” found in previous layers rather than pixels are being
forwarded and, as a result, the network sees progressively larger and more complete
parts of the image. In addition, since neurons focus on learning specific local features
instead of learning everything over andover (e.g., degree lines in images, small shapes
etc.) for each pixel, they gain a considerable speedup. Also, since the focus now is
entire subsets of the image and not pixels, keeping all values can be redundant and
therefore it is possible to gain even more in speedup if subsampling takes place.



8 A Decision-Support System for the Digitization of Circular … 105

Layers that do that are called pooling layers and together with the convolutional
layers they form the fundamental building blocks of Convolutional Neural Networks
(CNNs). Since CNNs have been around for many years and have been used in many
applications (e.g., object detection in images, face recognition, OCR etc.), many
datasets with images have been readily available by the community to train and
evaluate suchmodels. Awell-known example isMNIST (ModifiedNational Institute
of Standards and Technology database), a large database of handwritten digits that
is commonly used for training various image processing systems, with the goal of
recognizing handwriting and digits. Another useful source for datasets with tasks
like our own is Kaggle. It offers a dataset for an almost identical problem to our
own: dog versus cat classification. The dataset contains 25,000 of dogs and cats,
offering a generous number of samples to split into test-train-validation. However,
for tasks such as material classification and especially when speed is essential in
industrial workflows, it might not be possible to wait to obtain a good amount of
training samples. While this adds an additional challenge to our approach, there are
ways to remedy this. We will discuss two here. The first approach is pre-processing
of the initial data and augmenting them. What this means is that we take all available
samples and apply random basic yet random image transformations such as zooming,
rotations, rescaling etc. If the randomness is uniform enough without any bias, this
will generate even more data of a similar nature to the original. This technique can
essentially multiply the available training samples. That way, even with very few
data, we can produce a full training-ready dataset. The second approach is utilizing
a pretrained model on a large dataset and using its bottleneck features for our own
model, after fine-tuning the top layers. A pretrained model of this kind has already
learned the features which are the most useful. Leveraging these features, we can
potentially reach a better accuracy than relying only on available data. A well-known
example of such models is VGG16, which is pretrained on the ImageNet dataset.

Before incorporating a model like this into a custom model, fine-tuning its top
layers can further improve the results. This is done by instantiating VGG16’s convo-
lutional base with weights, adding the custom model on top of it (load its weights
as well), then finally freeze the layers of the VGG16 model up to the last convolu-
tional block. The result is a fine-tuned model to the specific task at hand. It is also
necessary to illustrate a weakness of utilizing a pretrained model. For a model like
this to be useful for general tasks, it must have been trained on very large datasets
and, to perform well, it is highly likely to be a model with a complex architecture
(this is further evident if you turn your attention back to Fig. 8.2). This means that,
to obtain the bottleneck features and fine-tune it, significant computational power is
required, while it will not be very fast the first time around. In applications where
speed is also an important factor, this might not even be an actual option. While the
second approach can potentially produce better results as explained before, we opted
to use data augmentation for FENIX’s purposes. Since we are addressing a real-
life problem involving online decision support and often requiring near-immediate
decisions on top of that. Therefore, it is paramount to utilize an approach that can
give relatively good results even with few data samples. Data augmentation for our
purposes is relatively simple. We split images for materials for which we already



106 D. Ntalaperas

Fig. 8.2 VGG16
architecture

know their class (good, bad) into their respective folders. Then, we augment the data
by randomly applying transformations on these images. An image produced by a
pre-classified as good or bad will obviously belong to the same class. Taking care to
produce an equal number of samples for all classes (two in our case), we further split
the data into train, test, validation, splitting each class folder into approximately 60%,
20% and 20%, respectively. Training is relatively fast on a CNN model, especially



8 A Decision-Support System for the Digitization of Circular … 107

when leveraging the power of a strong GPU. The result is a model which we offer as
a service via a REST API to the FENIX platform. The platform submits a material
image and the model almost instantly returns a response saying if it is a good or a
bad material.

8.5 Conclusions

Finally, it is interesting to observe that CNNmodels extract generic features from an
image such as lines, objects etc. which help them conduct classifications. While a
human expert can do something equivalent, a model can potentially extract features
which may not be intuitively responsible for biasing the classification towards one
category or another, yet they do. Even better, with a few adjustments, the model can
be tweaked to even show how the features it extracted affected its decision-making.

References

1. McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (Vol. 37). CRC press.
2. Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression

trees.
3. Belson, W. (1959). Matching and prediction on the principle of biological classification. JRSS,

Series C, Applied Statistics, 8(2), 65–75
4. Ho, T. K. (1995). Random decision forests. In Proceedings of the 3rd International Conference

on Document Analysis and Recognition, Montreal, QC, 14–16 August 1995 (pp. 278–282).
5. Friedman, J. H., & Popescu, B. E. (2005). Predictive learning via rule ensembles. Technical

Report.
6. Cohen, W. W., & Singer, Y. (1999). A simple, fast, and effective rule learner. In National

Conference on Artificial Intelligence.
7. Weiss, S. M., & Indurkhya, N. (2000). Lightweight rule induction. In ICML.
8. Dembczyński, K., Kotłowski, W., & Słowiński, R. (2008). Maximum likelihood rule ensembles.

In ICML.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	8 A Decision-Support System for the Digitization of Circular Supply Chains
	8.1 Extracted Materials Quality Prediction
	8.2 Rules Extraction
	8.3 Time Series Forecasting
	8.4 Materials Classification
	8.5 Conclusions
	References




